Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(3)2022 01 24.
Article in English | MEDLINE | ID: covidwho-1667132

ABSTRACT

Over time, complex interactions and a nonlinear progression among a wide range of variables contribute to the improvement of physical health and of the elite level achievement in youth sport practitioners [...].


Subject(s)
Sports , Youth Sports , Adolescent , Humans
2.
Biology (Basel) ; 10(11)2021 Nov 13.
Article in English | MEDLINE | ID: covidwho-1512104

ABSTRACT

The present study compared changes in body composition during the COVID-19-associated lockdown with the same period of the following season in elite soccer players. Fifteen elite male soccer players (30.5 ± 3.6 years.) underwent a bioelectrical impedance analysis (BIA) before (end of February) and after (end of May) the lockdown, which occurred during the 2019/2020 season, and at the same period during the following competitive season in 2020/2021, when restrictions were lifted. Fat and muscle mass were estimated using predictive equations, while phase angle (PhA) and bioelectrical impedance vector analysis (BIVA) patterns were directly measured. After lockdown, fat mass remained unchanged (p > 0.05), while muscle mass (95%CI = -1.12/-0.64; ES = -2.04) and PhA (95%CI = 0.51/-0.24, ES = -1.56) decreased. A rightward displacement of the BIVA vector was also found (p < 0.001, ES = 1.50). After the same period during the regular season, FM% and muscle mass did not change (p > 0.05), while the PhA increased (95%CI = 0.01/0.22; ES = 0.63). A leftward vector displacement (p < 0.001, ES = 1.05) was also observed. The changes in muscle mass correlated with changes in PhA ("lockdown" season 2019/2020: ß = -1.128, p = 0.011; "regular" season 2020/21: ß = 1.963, p = 0.011). In conclusion, coaches and strength conditioners should monitor muscle mass in soccer players during detraining periods as this parameter appears to be mainly affected by changes in training plans.

3.
International Journal of Environmental Research and Public Health ; 17(13), 2020.
Article in English | MEDLINE | ID: covidwho-662313

ABSTRACT

BACKGROUND AND AIM: Monitoring bioelectric phase angle (PhA) provides important information on the health and the condition of the athlete. Together with the vector length, PhA constitutes the bioimpedance vector analysis (BIVA) patterns, and their joint interpretation exceeds the limits of the evaluation of the PhA alone. The present investigation aimed to monitor changes in the BIVA patterns during a training macrocycle in swimmers, trying to ascertain if these parameters are sensitive to training load changes across a 13-week training period. METHODS: Twelve national and international level swimmers (four females;eight males;20.9 ± 1.9 years;with a competitive swimming background of 11.3 ± 1.8 years;undertaking 16-20 h of pool training and 4-5 h of dry-land training per week and 822.0 ± 59.0 International Swimming Federation (FINA) points) were evaluated for resistance (R) and reactance (Xc) using a single frequency phase sensitive bioimpedance device at the beginning of the macrocycle (M1), just before the beginning of the taper period (M2), and just before the main competition of the macrocycle (M3). At the three-time assessment points, swimmers also performed a 50 m all-out first stroke sprint with track start (T50 m) while time was recorded. RESULTS: The results of the Hotelling T2 test showed a significant vector displacement due to simultaneous R and Xc changes (p <0.001), where shifting from top to bottom along the major axis of the R-Xc graph from M1 to M2 was observed. From M2 to M3, a vector displacement up and left along the minor axis of the tolerance ellipses resulted in an increase in PhA (p <0.01). The results suggest a gain in fluid with a decrease in cellular density from M1 to M2 due to decrements in R and Xc. Nevertheless, the reduced training load characterizing taper seemed to allow for an increase in PhA and, most importantly, an increase of Xc, thus demonstrating improved cellular health and physical condition, which was concomitant with a significant increase in the T50 m performance (p <0.01). CONCLUSIONS: PhA, obtained by bioelectrical R and Xc, can be useful in monitoring the condition of swimmers preparing for competition. Monitoring BIVA patterns allows for an ecological approach to the swimmers'health and condition assessment without resorting to equations to predict the related body composition variables.

SELECTION OF CITATIONS
SEARCH DETAIL